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Abstract. In this paper we present a hybrid systems approach to freeway 
traffic control. We introduce a model of traffic which includes both vehicles 
and voids, where a void is a unit of space greater than the normal following 
distance between vehicles. The introduction of voids allows us to successfully 
model traffic flow via a wave model. We discuss the fundamentals of the 
Multiple Agent Hybrid Control Architecture which was used to implement 
our control of freeway traffic and the results of a simulation of our control. 
The main conclusion of our simulation is that one can significantly increase 
traffic throughput by controlling only 5-9% of the vehicles. 

1    Introduction 

This paper presents an architecture for the real-time feedback control of hybrid sys- 
tems through a communication network composed of multiple decision makers herein 
refereed to as agents. The paper discusses some recent results from the theory of Hy- 
brid systems, developed by the authors, related to the behavior of the architecture 
and illustrates them with a simple highway control system. This application was 
selected because it shares many elements of commonality with many other areas 
of application such as distributed control, sensor fusion, manufacturing shop-floor 
control and hybrid routing in communication networks; and yet it requires relatively 
modest modeling efforts. 

Our architecture implements formal real-time intelligent controllers with learn- 
ing capabilities. This architecture, termed the Multiple-Agent Hybrid Control Ar- 
chitecture (MAHCA), [21, 22], provides a knowledge-based, formal implementation 
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framework for deducing on-line feedback control and reactive strategies for processes 
involving multiple agents. The architecture includes capabilities for structural adap- 
tation as a function of predictable and unpredictable events in the processes under 
control. This characteristic is necessary for satisfying performance requirements in 
the unavoidable presence of sensory and knowledge uncertainty. 

We will illustrate the functional and operational characteristics of MAHCA in 
terms of a two-agent controller version whose goals are to maximize traffic through- 
put in a freeway network and to provide a dynamic route planning for selected cars 
through the network with minimum average time. The highway example was chosen 
because it explicitly exhibits some the basic properties of hybrid systems in a clear 
fashion. In addition we were able to demonstrate a property of these systems which 
is unique. That is, one can achieve a significant increase in throughput by control- 
ling a relatively small number of vehicles. This result is a consequence of the implicit 
inter-vehicle constraints that limit the degrees of freedom for control in the freeway 
to a small percentage of the total vehicle by vehicle aggregated degrees of freedom. 
This implies that a platooning effect is achieved spontaneously by controlling the 
velocity of about 9-14% of the cars in the freeway network. 

The organization of this paper is as follows. In section 2, we shall provide an 
overview of our freeway network model. In section 3, we shall descibe the generic 
variational model of MAHCA agent. In section 4, we shall give an overview of the 
architecture of MAHCA agent and how it carries out its computations. Finally in 
section 5, we will discuss the results of a simulation of our highway control. In 
particular, at the end of the paper, we will provide a series of charts which give the 
results of controlling 5%, 8%, and 9% of the vehicles. 

2    Freeway Network Model and Control 

The freeway network model we will use in our illustration of MAHCA is composed 
of two elements the Network Geometry and the Network Dynamics. We discus these 
elements in the next two subsections. 

The substance in a traffic flow is, of course, vehicles. However, in addition to 
modeling the flow of vehicles, the model also includes the flow of voids, where a 
void is a unit of space greater than the normal following distance between vehicles. 
As vehicles (referred to generically as "cars" in what follows) travel from a source 
(x = 0) to the destination (x = L), the voids travel in the reverse direction, i.e. 
starting at x = L. 

The introduction of voids eliminates a major problem with wave models. That is, 
such models are only valid for high uniform densities. Modeling the voids and their 
interaction with cars permits the generation of more realistic density distributions. 
When the voids are also modeled, the sparse density of vehicles become high densities 
of voids, allowing for model validity at low vehicle densities. This representation is 
patterned after the model of propagation of electrons and holes in semiconductor 
junctions. 

For incorporating driver behavior and policies we use a Toda lattice representa- 
tion vehicle interaction for each policy and generate the composite wave model via 
a formal aggregation procedure similar to the one proposed in [44]. 



A freeway segment is treated a single pipe with a capacity density corresponding 
to an average lane car velocity of 50 miles/hr for the number of lanes considered. 
Individual lanes are not modeled. Accidents are represented as reductions in the 
capacity of the segment. 

2.1    Network Geometry 

The network geometry is represented by a segment directed graph (SDG). An SDG 
is a structure composed of two types of sets: an edge set (E) and a node set (N). The 
set of edges (E), represent unidirectional freeways. Each edge (freeway) is modeled 
as a composite of one or more segments. The set of nodes (N) is composed of three, 
not necessarily disjoint, subsets: sources (S), interior nodes (I) and destination nodes 
(D). A source node represents a point at which cars enter the network, a destination 
node is a point at which cars leave the network and an interior node a point at 
which cars flow from one or more freeway segments to other freeway segments These 
concepts are illustrated in Figure 1. 

SourctNode % (freeway) Destination Node 

0 9 9 0 

Interior Nodes 

Freeway Segments 

Fig. 1. Geometry of the Model 

From the geometric point of view, an edge is a connected straight line with a di- 
rection, indicated by an arrow at its destination point, containing two or more nodes. 
An edge is composed of one or more segments where a segment is a line in between 
two nodes. A two-way freeway is represented by two edges with opposite directions. 
Thus, independently of the actual map characteristics of a freeway segment, in our 
model a freeway segment is represented by a straight line which we assume has the 
same length as the freeway segment it represents. This simplifying assumption does 



not cause inaccuracies because we model the constraints due to the geography and 
other constraints on traffic flow with a capacity function that we will describe in the 
next subsection. 

Figure 2 shows the geometric model of the freeway system of the greater Houston 
area. This network was used to exercise our 2-agent implementation of MAHCA. 
Some of the simulation results will be presented in section 5. 

^-0 
Destination 

Source and 
Destination 

0<0 »0 
Freeway 

Fig. 2. Houston Highway Network 

2.2    Freeway Network Dynamics 

For the purpose of representing traffic flow dynamics, we view the freeway segments 
as pipes with variable cross-section carrying a composite fluid of two types of inter- 
acting particles, "car" and "void" particles. The void particles represent statistical 



averages of inter-car distances. In each segment, cars flow in the direction of the 
segment edge while voids flows in the opposite direction. 

The central principle behind our dynamics model of freeway networks is that the 
number of cars and voids flowing through a freeway segment are conserved quantities. 
This principle is an extension of the one proposed [16] and [24] and is now widely 
used in analysis of freeway control [25]. 

Rather than introduce the principle in its more general form, we will motivate 
it informally from a simple particle model of single lane freeway segments. This 
exercise is important because many aspects of freeway dynamics [24], such as driver 
behavior, are easily stated in terms of particle models. 

The general idea behind particle models in a single lane freeway segment is the 
following. We set up a coordinate system with origin at the beginning node of the 
segment (we assume that a freeway segment inherits the direction of its edge). We 
assume that there are on the average M cars and M - 1 voids in the segment and 
that the speed at which the n-th car and the n-th void move, at time t are functions 
of the positions of the (n - l)-th and (n + l)-th cars and the (n - l)-th void in the 
lane. In symbols, 

*n(* + S) = /(*n-l(*)»*n-l(t).X|i+l(*)) (1) 

Sn(t + 6) = -0(aw-l(t)>*n-l(t)>*!H-l(*)) (2) 

where Xk(t) and sj(t) are respectively the position of the fc-th car and i-th void in 
the segment at time t and / and g are functions that capture driver behavior, car 
characteristics and geographic and environmental constraints. For the n-th car and 
n-th void (n = 1,..., M) in the segment, the functions / and g map the positions of 
neighboring cars and voids at time t to the speeds of the n-th car and n-th void at 
time t + 6 where S is a positive real number modeling average driver reaction time. 

For the purposes of characterizing highway segment velocity control and car 
routing through the network, the model above is not satisfactory. We need a model 
that gives a global view of the dynamics. With this goal in mind we have transformed 
the particle model above into a wave model [25]. In a wave model, the cars, the voids 
and their interactions, in each freeway segment, are expressed by a set of coupled 
partial differential equations expressing conservation of mass (of cars and voids) and 
velocity of cars and voids. These equations are given in (3) - (5) and (6) and (7) 
below. 

^£ + ^ + k1(C
c-pc)pv-k2(C

v-pv) = 0 (3) 

with 

%■+1*-+kl{cv -pv)pc - h{cc -pc)=0 (4) 

with 

Qv = QvoiPv)-di^ 



In (3) and (4), * is time, x is the freeway space variable, p?', for j = c or v, 
are the densities of the car and void particles (cars/mile, and voids /mile), Q*, for 
j = c or v, are the flows of cars and voids (cars /sec and voids/sec) respectively. 
The capacity of the freeway segment at each point is given by the functions Cj, 
for j = c or v, in cars/sec and voids/sec respectively. The coefficients fci and hi, 
are empirical coefficients expressing the transference from voids to cars and cars to 
voids respectively. Finally, d and d\ are aggregated empirical diffusion coefficients 
expressing driver behavior dependencies on the neighboring cars and voids. In (3) 
and (4), the functions Q3

0, j = c for cars or j = v for voids, are called the free flows 
(for cars and voids respectively and measuring the number of cars and voids per 
second), and are given by 

QUp>) = z"'=1"'Kfr >   with j = c or j = v (5) 

where a$ and b\ are empirical coefficients. In particular for, Greenber's law of traffic 
flow for freeway segments under heavy load [24], (5) is the Pade approximant to the 
natural logarithmic function. 

Equations (6) to (8) express the wave velocity dynamics v*, for j = c or v, of cars 
and voids along a freeway segment. In (6), fa and V" represent the control fields 
in each segment. Vu is the recommended wave velocity and kz is the percentage of 
cars that are controlled. Since the dynamics of an individual car is constrained by 
its neighbors the controller does not have to control all the cars on the segment to 
achieve the desired goal which is to maximize throughput for the freeway network. 

TB-+«,£->"-,"'*+*£-> (6) 

The equations in (8), express the boundary conditions for each freeway segment. 
The right-hand side of the first equation expresses the gradient of the density of 
cars and voids being pumped into the segment. The right-hand side of the second 
equation in (8) expresses the density of particles leaving the segment. 

^(t,0) =p?(t)j = v or c (8) 

with 
pHt,l) = e*{t) 

The exchange between voids and cars is given by 

^ + ^l + ^ + ^=0. (9, 
at       ot       ox       ox 

This equation forms the rule which guarantees the conservation of the total number 
of "units" (cars and voids) in the freeway system. 

The model outlined above, characterizes the dynamics of freeway segments and 
hence the freeway network. This model constitutes the specific (problem dependent) 



equational knowledge required to control the freeway network using MAHCA. The 
next subsection formulates the highway velocity control problem as a multiple agent, 
knowledge-based control problem. 

2.3     Control Problem 

The overall goal of the control system is to maximize throughput for the freeway 
network by controlling the velocity Vu and the percentage of controlled cars £3, 
referred to as the control actions, in each segment. We associate with each segment i 
a control agent Ai which generates the control actions for the corresponding segment 
as a function of sensory data, goal data, current status data and information from 
the other agents via a communication network herein referred to as the Control 
Network. A formal model of the control network and its dynamics is given in section 
3. 

3    Control Network 

3.1    A MAHCA Agent's Model 

In general, a hybrid system has a hybrid state, the simultaneous dynamical state 
of all plants and digital control devices. Properly construed, the hybrid states will 
form a differentiable manifold which we call the carrier manifold of the system. To 
incorporate the digital states as certain coordinates of points of the carrier manifold, 
we "continualize" the digital states. That is, we view the digital states as finite, real- 
valued, piecewise-constant functions of continuous time and then we take smooth 
approximations to them. This also allows us to consider logical and differential or 
variational constraints on the same footing, each restricting the points allowed on 
the carrier manifold. In fact, all logical or discontinuous features can be continualized 
without practical side-effects. This is physically correct since for any semiconductor 
chip used in an analog device, the zeros and ones are really just abbreviations for 
sensor readings of the continuous state of the chip. Every constraint of the system, 
digital or continuous, is incorporated into the definition of what points are on the 
carrier manifold. Lagrange constraints are regarded as part of the definition of the 
manifold as well, being restrictions on what points are on the manifold. 

More specifically, let Ai, i = I,..., N(t) denote the agents active at the current 
time t . In our model, t takes values on the real line. At each time t, the status of 
each agent in the network is given by a point in a locally differentiable manifold 
M [24]. The Behavior function Bi of an active agent Ai is given by a continuous 
function, 

Bi-.MxT^R+ (10) 

where T is the real line (time space) and R+ is the positive real line. M is contained 
in the Cartesian Product 

MCGxSxXxA (11) 

where G is the spaces of goals, S is the space of sensory data, X is the space 
of controller states and A is the space of control actions. In the freeway network, 
X is the space of current distributions of car and void densities and velocities in 



its segments, 5 is the space of measurements of car and void densities along the 
segment (one sensor each third of a mile), A is the space spanned by the velocity 
and percentage fields, and G is the set of car and void densities that maximizes 
throughput. 

Prom an agent's point of view, the dynamics of the control network is charac- 
terized by certain trajectories on the manifold M. These trajectories characterize 
the flow of information through the network and its status. Specifically, we need to 
define two items: 

(i) a set of generators for the behavior functions at time t, 

{Bi(p,t):i = l,...N,peM} (12) 

and 
(ii) the control actions issued by the agents. 

We will see shortly that these actions are implemented as infinitesimal transforma- 
tions defined in M. The general structure of the behavior function in (12) for an 
agent Ai at time t is given in (13) below: 

Si(p,*) = -Wi,£,aO(p,<) (13) 

where Fi is a smooth function, B is the vector of behavior functions, C" is the 
behavior modification function for the i-th agent, and ai is the command action 
issued by the i-th agent. We will devote the rest of this subsection to characterizing 
this model. 

We start with a discussion of the main characteristics of the manifold M. In 
general a manifold M is a topological space (with topology 0) composed of three 
items: 

(a) A set of points of the form of (11). 
(b) A countable family of open subsets of M, Ui such that 

\JUi = M. 
i 

(c) A family of smooth homeomorphisms, {fa : fa :Ui-¥ Vi), where for each j, Vj 
is an open set in Rk. The sets Ui are referred to in the literature as coordinate 
neighborhoods or charts. For each chart Uj the corresponding function fa is 
referred to as its coordinate chart. 

The coordinate chart functions satisfy the following additional condition: 

Given any charts Ui and Uj such that Ui l~l Uj ^ 0, the function fa o far1 • 
<t>j(Ui D Uj) -*■ fa(Ui D Uj) is smooth. 

In the literature, one usually finds an additional property, which is the Hausdorff 
property in the definition of manifolds [25]. Since this property does not hold in our 
application we will not discuss it. 

Now we proceed to customize the generic definition of the manifold to our appli- 
cation. We start with the topology & associated with M. We note that the points 



of M have a definite structure, see (11), whose structure is characterized by the 
interval of values in the space G of goals, the space S of sensory data, the space X of 
controller states and the space A of control actions. The number of these parameters 
equals k. The knowledge about these parameters is incorporated into the model by 
defining a finite topology Q on Rk [5]. 

The open sets in Q are constructed from the clauses encoding what we know 
about the parameters. The topology 0 of M is defined in terms of J? as follows. For 
each open set W in 0 such that W C Vj C Rk, we require that the set ^(W) 
be in 0. The sets constructed in this way form a basis for 0 so that a set U C M 
is open if and only if for each p£U, there is j and an open set W e fi such that 
W CVj and pe^(W). 

To characterize the actions commanded by a MAHCA agent we need to introduce 
the concept of derivations on M. Let Fp be the space of real valued smooth functions 
/ defined in a neighborhood a point p in M. Let / and g be functions in Fp. A 
derivation v of Fp is a map 

v:Fp-^Fp 

that satisfies the following two properties. 

v(f + 9)(p) = (v(f) + v(g))(p) (Linearity) (14) 
v(f-g)(p) = (v(f)-9 + f-v(g))(p)     ( Leibniz Rule) (15) 

Derivations define vector fields on M and a class of associated curves called 
integral curves [26]. Suppose that C is a smooth curve on M parameterized by 
ip :I -» M where / a subinterval of R. In local coordinates, p = (p1, ...,pfc), C is 
given by k smooth functions jp(i) = (V'1(t), ...,ipk(t)) whose derivative with respect 
to t is denoted by ip(t) = (il>1(t),...,ipk(t)). We introduce an equivalence relation 
on curves in M as the basis of the definition of tangent vectors at a point in M [14]. 
Two curves ipi(t) and fait) passing through a point p are said to be equivalent at p 
(notation: V'i(') ~ V*2(*))> ^ there exists T\,T<I £ I such that 

rpiin) = fofo) = P (16) 

&(n) =&(**)• (17) 
Clearly, ~ defines an equivalence relation on the class of curves in M passing 

through p. Let [xß] be the equivalence class containing ip. A tangent vector to [V>] is a 
derivation, v\p, such that in local coordinates (p1,... ,pk), it satisfies the condition 
that given any smooth function / : M -> R, 

«l,(/)(p) = £^(«)^r (18) 

where p = ij}{t). The set of tangent vectors associated with all the equivalence classes 
at p defines a vector space called the tangent vector space at p, denoted by TMP. 
The set of tangent spaces associated with points in M can be "glued" together to 
form a manifold called the tangent bundle which is denoted by TM, 

TM = (J TMP. 
pem 



For our purposes, it is important to specify explicitly how this gluing is implemented. 
This will be explained below after we introduce the concept of a vector field and 
discuss its relevance in the model. 

A vector field on M is an assignment of a derivation v\p to each point p of M 
which varies smoothly from point to point. That is, if p = (px,...,p*) are local 
coordinates, then we can always write v\p in the form 

«i» = E*<p>s* (19) 
3 

Then v is a vector field if the coordinate functions A* are smooth. 
Comparing (18) and (19) we see that if ip is a parameterized curve in M whose 

tangent vector at any point coincides with the value of v at a point p = i/>{t), then 
in the local coordinates p = {ip1 (*),..., ißk(t)), we must have 

fi(t) = X(p)forj = l,...,k. (20) 

In our application, each command issued by the MAHCA agent is implemented 
as a vector field in M. Each agent constructs its command field as a combination 
of 'primitive' predefined vector fields. Since the chosen topology for M, 0, is not 
metrizable, we cannot guarantee a unique solution to (20) in the classical sense 
for a given initial condition. However, they have solutions in a class of continuous 
trajectories in M called relaxed curves [33]. In this class, the solutions to (20) are 
unique. We discuss the basic characteristics of relaxed curves as they apply to our 
process control formulation and implementation in Section 4. Next, we describe some 
of their properties as they relate to our plant model and control process. For this 
objective, we need to introduce the concept of flows in M. 

If v is a vector field, any parameterized curve passing through a point p in M is 
called an integral curve associated with v if in local coordinates (5) holds. An integral 
curve associated with a field v, denoted by &(t,p) is termed the flow generated by v 
if it satisfies the following properties: 

\P(t,&(T,p)) = #(* + T,p) (semigroup property) (21) 
^(0,p)=p (initial condition) 

and 

—\P(t,p) = v |y>(t)P)  (flow generation) 

Now we are ready to customize these concepts for our model. Let A > 0 be 
the width of the current decision interval, [t, t + A). Let C?(jp, t) be the unsatisfied 
demand at the beginning of the interval. Agent Ai has a set of primitive actions: 

{vi,j • 3 = 1) • • • > ni where Vij \p 6 TMP for each pern). (22) 

During the interval [t,t + A), agent Ai schedules one or more of these actions to 
produce a flow which will bring the system closer to the goal. In particular, Ai deter- 
mines the fraction ct{j(p,t) of A that action Vij must be executed as a function of 
the external perturbation functions 5r>»(t,p) and the vector of the behavior functions 
of the agents in the network B(p,t) = (B%(p, <),..., £#(*))• Figure 3 conceptually 
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Fig. 3. Conceptual illustration of agent action schedule 

illustrates a schedule of actions involving three primitives. We will use this example 
as means for describing the derivation of our model. The general case is similar. 

The flow <Pj associated with the schedule of Figure 3 can be computed from the 
flows associated with each of the actions: 

$i(T,p) = i 

(^vi<ni(T,p)-dt<T<t + Aitni 

*«<.„, (T, *«.W1 (T,P)) if * + Ai>ni <r<t + Aiini + Ai<n3 .   . 

if t + Ai,ni + Aitn2 <T<t + Ai<ni + Ai>n2 + Aiitl3 

where A = Ai<ni + Ai>n2 + Aiina and aj,„, +aitn2+aiin3 = 1. We note that the flow 
&i given by (23) characterizes the evolution of the process as viewed by agent A{. 
The vector field Vi\p associated with the flow !Pj is obtained by differentiation and 
the third identity in (21). This vector field applied at p is proportional to 

Km.Kr^i.ns]] (24) 

where [.,.] is the Lie bracket due to the parallelogram law, see [42]. The Lie bracket 
is defined as follows. Let v and w, be derivations on M and let / : M -4 R be any 
real valued smooth function. The Lie bracket of v and w is the derivation defined by 

[v,v>](f) = v(w{f))-w(v{f))t 

see [10]. 
Thus the composite action Vi\p generated by the i-th agent to control the process 

is a composition of the form of (24). Moreover from a version of the Chattering 



lemma and duality [18], we can show that this action can be expressed as a linear 
combination of the primitive actions available to the agent as follows. 

Km, Kn2, Vi,n3\] = 53 7J ("Kj (25) 
3 

j 

where the coefficients 7J determined by the fraction of time that each primitive 
action Vij is used by agent i. 

The effect of the field defined by the composite action Vi\p on any smooth function 
(equivalent function class) is computed by expanding the right hand side of (23) in 
a Lie-Taylor series [10]. In particular, we can express the change in the behavior 
modification functions C" due to the flow over the interval A in terms of Vi\p. The 
evolution of the modified behavior function C" over the interval starting at point p 
is given by 

C?(t + A,p") = C?(t, $i(t + A,p)) (26) 

Expanding the right hand side of (26) in a Lie-Taylor series around (t,p), we 
obtain, 

„.(„^^WM^ 
, " 

where 

(«J|p(-))i = ^lp((«i|pO)i"1) (27) 

and 

NP)°(/) = / for all /. 

In general, the series in the right hand side of (27) will have countable many non- 
zero terms. In our case, since the topology of M is finite due to the fact that it is 
generated by finitely many logic clauses, this series will have only finitely many non- 
zero terms. Intuitively, this is so because in computing powers of derivations (i.e., 
limits of differences), we need only to distinguish among different neighboring points. 
In our formulation of the topology of M, this can only be imposed by the information 
in the clauses of the agent's Knowledge Base. Since each agent's Knowledge Base 
has only finitely many clauses, there is a term in the expansion of the series in which 
the power of the derivation goes to zero because we cannot distinguish between 
two points which cannot be separated by open sets in the finite topology. This 
is important because it allows the series in the right-hand side to be effectively 
generated by a locally finite automaton. We will expand on the construction of this 
automaton in the next section when we discuss the inference procedure carried out 
by each agent. 

We note that given the set of primitive actions available to each agent, the 
composite action is determined by the vector of fraction functions aj . We will 
see in the next section that this vector is inferred by each agent from the proof of 
existence of solutions of an optimization problem. 



Now we can write the specific nature of the model formulated in expression (13). 
At time t and at point p G M the behavior modification function of agent i is given 
by: 

Crip, t) = Cf (p, *") + Sr,i(p,*) + £ <?*,*£*(?, O (28) 
k 

where t~ is the end point of the previous update interval, Sr,i is the external per- 
turbation function to agent i, and Qitk is a multiplier determining how much of the 
current behavior modification requirements of agent Ak is allocated to agent Ai. This 
allocation is determined from the characteristics of the process both agents are con- 
trolling and from the process description encoded in the agent's knowledge base. The 
actual request for service from agent k to agent t is thus the term, Qi,kBk(p,t~). 
The information sent to agent i by agent k is the behavior modification function 
Bk(p,t~) at the end of the previous interval. Finally the point p 6 M carries the 
current status of the process monitored by the agents appearing in (28). Agent k 
thus contributes to Agent i's new control only if Qitk # 0. 

This concludes our description of the model. For space considerations, some de- 
tails have been left out. In particular those related to the strategy for activation and 
deactivation of agents. These will be discussed in a future paper. 

4     The Multiple Agent Hybrid Control Architecture 

In this section, we describe the main operational and functional characteristics of 
our intelligent controller. As we mentioned in the introduction, this controller is 
implemented as a distributed system composed of agents and a communication net- 
work. We referred to the latter as the control network in the previous section. The 
architecture realizing this system, called the Multiple-Agent Hybrid Control Ar- 
chitecture (MAHCA), operates as an on-line distributed theorem prover. At any 
update time, each active agent generates actions as side effects of proving an exis- 
tentially quantified subtheorem (lemma) which encodes the desired behavior of the 
logic communications network as viewed by the agent. The conjunction of lemmas 
at each instant of time, encodes the desired behavior of the entire network. 

Each agent of MAHCA consists of five modules: a Planner, a Dynamic Knowledge 
Base, a Deductive Inferencer, an Adapter and a Knowledge Decoder. We briefly 
overview the functionality of an agent in terms of its modules. 

The Knowledge Base stores the requirements of operations or processes con- 
trolled by the agent. It also encodes system constraints, inter-agent protocols and 
constraints, sensory data, operational and logic principles and a set of primitive 
inference operations defined in the domain of equational terms. 

The Planner generates a statement representing the desired behavior of the sys- 
tem as an existentiälly quantified logic expression herein referred to as the Behavior 
Statement. 

The Inferencer determines whether this statement is a theorem in the theory 
currently active in the Knowledge Base. If the behavior statement logically follows 
from the current status of the knowledge base, the inferencer generates, as a side 
effect of proving this behavior statement to be true, the current control action sched- 
ule. If the behavior statement does not logically follow from the current status of 



the knowledge base, that is, the desired behavior is not realizable, the inferencer 
transmits the failed terms to the Adapter module for replacement or modification. 

Finally, the Knowledge Decoder translates data from the other agents and incor- 
porates them into the Knowledge Base of the agent. 

In each agent of MAHCA, the behavior statement is the formulation of a re- 
laxed variational optimization problem whose successful resolution produces an ac- 
tion schedule of the form of (24). Each agent operates as a real-time theorem prover 
in the domain of relaxed variational theory [39]. A customized version of this the- 
ory, enriched with elements of differential geometry, equational logic and automata 
theory provides a general representation for the dynamics, constraints, requirements 
and logic of the control network . We devote the rest of this section to the discussion 
of the main elements of this theory in the context of the operational features of 
MACHA. 

The architecture is composed of two items: The Control Agent, and the control 
network. These items are illustrated in Figures 4 and 5 respectively. We will discuss 
them in the remaining of this section. 

4.1    Architectural Elements of a control agent: 

We will discuss next the functionality of the five modules of a control agent. These 
are: the Knowledge Base, the Planner, the Inferencer, the Knowledge Decoder and 
the Adapter. 

4.1.1. Knowledge Base: The Knowledge Base consists of a set of equational first 
order logic clauses with second order extensions. The syntax of clauses is similar to 
the ones in the Prolog language. Each clause is of the form 

Head <- Body (29) 

where Head is a functional form, p(xi, ...x„), taking values in the binary set 
[true, false] and x\, x2,..., xn are variables or parameters in the domain M of the 
MAHCA network. The symbol «- stands for logical implication. The variables ap- 
pearing in the clause head are assumed to be universally quantified. The Body of a 
clause is a conjunction of one or more logical terms 

ei A e-2. A ... A en (30) 

where A is the logical 'and'. Each term in (30) is a relational form. A relational 
form is one of the following: an equational form, an inequational form, a covering 
form, or a clause head. The logical value of each of these forms is either true or 
false. A relational form ei is true precisely at the set of tuples of values Si of the 
domain taken by the variables where the relational form is satisfied and is false for 
the complement of that set. Thus for a = e^Xi,... ,x„), Si is the possibly empty 
subset of Mn 

Si = {(xi,...,xn) G M" : ei{xu...,xn) = true) 
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so that 
ei(xi,...,x„) = false if (xi,...,xn) e Mn/Si- 

The generic structure of a relational form is given in Table 1. 
Form 

equational 
inequational 

covering 
clause head 

Structure 
w(x!,...,xn) = v(xi,...,xn) 
w(xi,...,xn) ^v(xi,...,xn) 
w{xi,...,xn) <v(xi,...,xn) 

q(xi,...,xn)  

Meaning 
equal 

not equal 
partial order 

recursion,chaining 

Table 1. Structure of the Relational Form 

In Table 1, w and v are polynomic forms with respect to a finite set of operations 
whose definitional and property axioms are included in the Knowledge Base. A 
polynomic form v is an object of the form v(xi,..., xn) = J^uep(v,w) "w wnere ^* 1S 

the free monoid generated by the variable symbols {xi,...,x„} under juxtaposition. 
The term (v, w) is called the coefficient of v at u. The coefficients of a polynomic 
form v take values in the domain of definition of the clauses. The domain in which 
the variables in a clause head take values is the manifold M described in section 2. 
The logical interpretation of (29) and (30) is that the Head is true if the conjunction 
of the terms of Body are jointly true for instances of the variables in the clause head. 
M is contained in the Cartesian product : 

M CGxS xX xA (31) 

where G is the space of goals, S is the space of sensory data, X is the space of 
controller states and A is the space of control actions. These were described in 
section 2. G, S, X, and A are manifolds themselves whose topological structure 
are defined by the specification clauses in the Knowledge Base, see Figure 6. These 
clauses, which are application dependent, encode the requirements on the closed- 
loop behavior of the model of the agent. In fact the closed loop behavior, which we 
will define later in this section in terms of a variational formulation, is characterized 
by continuous curves with values in M. This continuity condition is central because 
it is equivalent to requiring the system to look for actions that make the closed loop 
behavior satisfy the requirements of the plant model. 

The denotational semantics of each clause in the knowledge base is one of the 
following: 

1. a conservation principle, 
2. an invariance principle, or 
3. a constraint principle. 

Conservation principles are one or more clauses about the balance of a particular 
process in the dynamics of the system or the computational resources. For instance, 
equation (28) encoded as a clause expresses the conservation of demand in the logic 
communications network 



conaervation^of.unsatisfied-demand(p,t,[Qiti.],Sr,i,[Bi.],A,C"(t,p)) «- 

cnt^v)^ (v<lp(crTy)))" * 
I* encoding of equation (13) */ 

C,v(t+4,p')=cr(t,p)+Sr,<(t,p)+^fcOi.<iß*(«.P.P) A (32) 
/* encoding of equation (15) */ 

proce*«_et)oJutton(p,t,p") A  /* encoding of equation (13) */ 

consevation-of-un8atisfied-demand(p",t+A,[Qitk],Sr,i,[Bi.],A,C?(t+2A,p") 

In (32), the first equational term relates the segment car density for agent i at 
the current time to the density in the past and the net current density of the other 
agents connected to agent i. The last term of the rule implements the recursion. 

As another example, consider the following clause representing conservation of 
computational resources: 

comp(Load,Process,Opucount,Limit) <— proceBs(proces>-count) 

A proces8-count-Loadi—Op-count<Load 

A Load\<Limit 

A comp(Load\,Proceas,Op-count,Limit). 

where Load corresponds to the current computational burden, measured in VIPS 
(Variable Instantiations Per Second), Process is a clause considered for execution, 
and Opjamnt is the current number of terms in process. 

Conservation principles always involve recursion whose scope is not necessarily a 
single clause, as in the example above, but with chaining throughout several clauses. 

Invariance principles are one or more clauses establishing constants of the evo- 
lution of agent's behavior modification functions in a general sense. These principles 
include stationarity, which plays a pivotal role in the formulation of the theorems 
proved by the architecture, and geodesies. The necessary conditions for maximizing 
throughput in the freeway network constitute an example of this type of principle. 
The importance of invariance principles lies in the reference they provide for the 
direction of unexpected events. 

Constraint principles are clauses representing engineering limits to actuators or 
sensors and, most importantly, behavior policies. The clauses defining the capacity 
function in each segment are examples of these type of principles. Another example in 
this application is given by the clauses that define the lifting strategy for embedding 
discrete varying trajectories into M (interpolation rules). 

The clause database is organized in a nested hierarchical structure illustrated in 
Figure 6. The bottom of this hierarchy contains the equations that characterize the 
algebraic structure defining the terms of relational forms, i.e an algebraic variety 
[45]. 

At the next level of the hierarchy, three types of clauses are stored: Generic 
Control Specifications, System Representation and Goal Class Representation. 
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The Generic Control Specifications are clauses expressing general desired behav- 
ior of the system. They include statements about stability, complexity and robustness 
that are generic to the class of declarative rational controllers. These specifications 
are written by constructing clauses that combine laws of the kind which use the 
Horn clause format described earlier. Examples of these types of clausse are the one 
that specifies the range of the parameters in the traffic model for which the system 
is stable. 

The Process Representation is given by clauses characterizing the dynamic behav- 
ior and structure of the plant, which includes sensors and actuators. These clauses 
are written as conservation principles for the dynamic behavior and as invariance 
principles for the structure. As in the case of Generic Control Specifications, they are 
constructed by combining a variety of laws in the equational Horn clause format. An 
example of this type of clause are the density and velocity equations of the freeway 
segments given in section 2 encoded in Horn clause format. 

The Goal Class Representation contains clauses characterizing sets of desirable 
operation points in the domain (points in the manifold M). These clauses are ex- 
pressed as soft constraints; that is, constraints that can be violated for finite intervals 
of time. They express the ultimate purpose of the controller but not its behavior 
over time.. 

The next level of the hierarchy involves the Control Performance Specifications. 
These are typically problem dependent criteria and constraints. They are written in 
equational Horn clause format. They include generic constraints such as speed and 
time of response, and qualitative properties of state trajectories [39]. 

Dynamic Control Specifications are equational Horn clauses whose bodies are 
modified as a function of the sensor and goal commands. 



Finally, Model Builder Realization clauses constitute a recipe for building a pro- 
cedural model (an automaton,) for generating variable instantiation (unification), 
and for theorem proving. 

4.1.2. The Planner: 
The function of the theorem Planner, which is domain-specific, is to generate, 

for each update interval, a symbolic statement of the desired behavior of the system, 
as viewed, say by agent j, throughout the interval. The theorem statement that it 
generates has the following form. 

Given a set of primitive actions there exists a control schedule Vi\p of the 
form (25) and a fraction function differential da(-) (Figure 3) in the control 
interval [t, t + A) such that da(-) minimizes the functional 

/t+A 
i<(^(T,p),«f|P(G(i(r,p)))da(p,dr) (33) 

subject to the following constraints: 

(local goal for the interval), 

£<?<.»»(P,*)£m(P,*)    =    Vi(p,t) (34) 
m 

(inter-agent constraint, see (28)) 
and 

/t+A 
da(p,dr)   =  1 

In (33), Li is the Local Relaxed Lagrangian of the system as viewed by Agent i 
for the current interval of control [t,t + A). This function, which maps the Cartesian 
product of the state and control spaces into the real line with the topology defined 
by the clauses in the knowledge base, captures the dynamics, constraints and re- 
quirements of the system as viewed by agent i. The relaxed Lagrangian function 
Li is a continuous projection in the topology defined by the knowledge base (see 
[36]) in the coordinates of the i-th agent of the global Lagrangian function L that 
characterizes the system as a whole. 

In (34), p represents the state of the process under control as viewed by the agent 
and d is the parallel transport operator bringing the goal to the current interval, 
see [27]. The operator d is constructed by lifting to the manifold the composite flow 
(see equation (23)). We note that the composite flow and the action schedule are 
determined once the fraction function is known and that this function is the result 
of the optimization (33), (34). In particular, the action schedule is constructed as a 
linear combination of primitive actions, see equation (25). 

The term da(-) in (33) is a Radon probability measure [40] on the set of primitive 
control actions or derivations that the agent can execute for the interval [t, t + A). It 
measures, for the interval, the percentage of time to be spent in each of the primitive 



Fig. 7. Illustration of optimization 

derivations. The central function of the control agent is to determine this mixture 
of actions for each control interval. This function is carried out by each agent by 
inferring from the current status of the knowledge base whether a solution of the 
optimization problem stated by the current theorem exists, and, if so, to generate 
corresponding actions and state updates. Figure 7 illustrates the relations between 
the primitive actions and the fraction of A they are active in the interval [t,t + A). 

The expressions in (34) constitute the constraints imposed in the relaxed op- 
timization problem solved by the agent. The first one is the local goal constraint 
expressing the general value of the state at the end of the current interval. The 
second represents the constraints imposed on the agent by the other agents in the 
network. Finally, the third one indicates that is a probability measure. Under relax- 
ation and with the appropriate selection of the domain, see [21], the optimization 
problem stated in (33) and (34) is a convex optimization problem. This is important 
because it guarantees that if a solution exists, it is unique up to probability, and 
also, it guarantees the computational effectiveness of the inference method that the 
agent uses for proving the theorem. 

The construction of the theorem statement given by (33) and (34) is the central 
task carried out in the Planner. It characterizes the desired behavior of the process 
as viewed by the agent in the current interval so that its requirements are satisfied 
and the system "moves" towards its goal in an optimal manner. 

4.1.3. Adapter: 
The function under the integral in (33) includes a term, referred to as the "catch- 

all" potential, which is not associated with any clause in the Knowledge Base. Its 



function is to measure unmodeled dynamic events. This monitoring function is car- 
ried out by the Adapter which implements a generic commutator principle similar to 
the Lie bracket discussed in section 3.1, see (24). Under this principle, if the value of 
the catch-all potential is empty, the current theorem statement adequately models 
the status of the system. On the other hand, if the theorem fails, meaning that there 
is a mismatch between the current statement of the theorem and system status, 
the catch-all potential carries the equational terms of the theorem that caused the 
failure. These terms are negated and conjuncted together by the Inferencer accord- 
ing to the commutation principle (which is itself denned by equational clauses in 
the Knowledge Base) and stored in the Knowledge Base as an adaptation dynamic 
clause. The Adapter then generates a potential symbol, which is characterized by 
the adaptation clause and corresponding tuning constraints. This potential is added 
to criterion for the theorem characterizing the interval. 

The new potential symbol and tuning constraints are sent to the Planner which 
generates a modified local Lagrangian for the agent and goal constraint. The new 
theorem, thus constructed, represents adapted behavior of the system. This is the 
essence of reactive structural adaptation in the our model 

At this point, we pause in our description to address the issue of robustness. 
To a large extent, the adapter mechanism of each controller agent provides the sys- 
tem with a generic and computationally effective means to recover from failures or 
unpredictable events. Theorem failures are symptoms of mismatches between what 
the agent thinks the system looks like and what it really looks like. The adaptation 
clause incorporates knowledge into the agent's Knowledge Base which represents a 
recovery strategy. The Inferencer, discussed next, effects this strategy as part of its 
normal operation. 

4.1.4. Inferencer: 
The Inferencer is an on-line equational theorem prover. The class of theorems it 

can prove are represented by statements of the form of (33) and (34), expressed by 
an existentially quantified conjunction of equational terms of the form: 

3Z(Wi(Z,p) reh Vi(Z,p) A ... A Wn(Z,p) rel{ Vn(Z,p)) (35) 

where Z is a tuple of variables each taking values in the domain D, p is a list of 
parameters in D, and {Wi,Vj} are polynomial terms in the semiring polynomial 
algebra: 

D{0) (36) 

where D = (D, (+, •, 1,0)) a semiring algebra with additive unit 0 and multiplicative 
unit 1. In (35), relt, i = 1,..., n are binary relations on the polynomial algebra. Each 
reli can be either an equality relation (= ), inequality relation (^ ), or a partial order 
relation (<). In a given theorem, more than one partial order relation may appear. 
In each theorem, at least one of the terms is a partial order relation that defines a 
complete lattice on the algebra that corresponds to the optimization problem. This 
lattice has a minimum element if the optimization problem has a minimum. Given 
a theorem statement of the form of (35) and a knowledge base of equational clauses, 
the Inferencer determines whether the statement logically follows from the clauses 



in the Knowledge Base, and if so, as a side effect of the proof, generates a non-empty 
subset of tuples with entries in M giving values to Z. These entries determine the 
agent's actions. Thus, a side effect is instantiation of the agent's decision variables. 
In (36), fi is a set of primitive unary operations, {«<}, the infinitesimal primitive 
fields defined in section 3. Each Vi maps the semiring algebra, whose members are 
power series involving the composition of operators from Z to itself 

Vi:b{{Z))^D{{Z)). (37) 

These operators are characterized by axioms in the Knowledge Base and are pro- 
cess dependent. In formal logic, the implemented inference principle can be stated 
as follows: Let S be the set of clauses in the Knowledge Base. Let =>■ represent 
implication. Proving the theorem means to show that it logically follows from S, i.e. 

E =$> theorem. (38) 

The proof is accomplished by sequences of applications of the following inference 
axioms: 

(i) equality axioms 
(ii) inequality axioms 
(iii) partial order axioms 
(iv) compatibility axioms 
(v) convergence axioms 
(vi) knowledge base axioms 
(vii) limit axioms 

The specifics of these inference axioms can be found in [13] where it is shown that 
each of the inference principles can be expressed as an operator on the Cartesian 
product 

D((W)) x D((W)). (39) 

Each inference operator transforms a relational term into another relational term. 
The inferencer applies sequences of inference operators on the equational terms of 
the theorem until these terms are reduced to either a set of ground equations of the 
form of (40) or it determines that no such ground form exists. 

Zi = ai,aieD (40) 

The mechanism by which the inferencer carries out the procedure described above 
is by building a procedure for variable goal instantiation which in our case is a locally 
finite automaton. We refer to this automaton as the Proof Automaton. This impor- 
tant feature is unique to our approach. The proof procedure is customized to the 
particular theorem statement and Knowledge Base instance it is currently handling. 
The structure of the proof automaton generated by the Inferencer is illustrated in 
Figure 8. 

In Figure 8, the initial state represents the equations associated with the theo- 
rem. In general, each state corresponds to a derived equational form of the theorem 
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through the application of a chain of inference operators to the initial state that is 
represented by the path, 

infi c in/2      infk So ■sk. 

Each edge in the automaton corresponds to one of the possible inferences. A state is 
terminal if its equational form is a tautology, or it corresponds to a canonical form 
whose solution form is stored in the Knowledge Base. In traversing the automaton 
state graph, values or expressions are assigned to the variables. In a terminal state, 
the equational terms are all ground states (see (40)). If the automaton contains 
at least one path starting in the initial state and ending in a terminal state, then 
the theorem is true with respect to the given Knowledge Base and the resulting 
variable instantiation is a valid one. If this is not the case, the theorem is false. 
The function of the complete partial order term present in the conjunction of each 
theorem provable by the inferencer is to provide a guide for constructing the proof 
automaton. This is done by transforming the equational terms of the theorem into 
a canonical fixed point equation, called the Kleene-Schutzenberger Equation (KSE) 
[13], which constitutes a blueprint for the construction of the proof automaton. This 
fixed point coincides with the solution of the optimization problem formulated in 
(33) (34), when it has a solution. The general form of KSE is 

Z = E(p)-Z + T(p) (41) 

In (41), E is a square matrix, with each entry a rational form constructed from 
the basis of inference operators described above, and T is a vector of equational 
forms from the Knowledge Base. Each non-empty entry, Eij, in E corresponds to 



the edge in the proof automaton connecting states i and j. The binary operator "•" 
between E(p) and Z represents the "apply inference to" operator. Terminal states 
are determined by the non-empty terms of T. The p terms are custom parameter 
values in the inference operator terms in E{-). 

A summary of the procedure executed by the inferencer is presented in Figure 9. 
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Fig. 9. Summary of Inferencer Procedure 

We note that the construction of the automaton is carried out from the canoni- 
cal equation and not by a non-deterministic application of the inference rules. This 
approach reduces the computational complexity of the canonical equation (low poly- 
nomic) and is far better than applying the inference rules directly (exponential). 

The automaton is simulated to generate instances of the state, action and eval- 
uation variables using an automaton decomposition procedure [41] which requires 
nlog2n time, where n is the number of states of the automaton. This "divide and 
conquer" procedure implements the recursive decomposition of the automaton into 
a cascade of parallel unitary (one initial and one terminal state) automata. Each of 
the resulting automata on this decomposition is executed independently of the oth- 
ers. The behavior of the resulting network of automata is identical with the behavior 
obtained from the original automaton, but with feasible time complexity. 

The Inferencer for each control agent fulfills two functions, (i) to generate a proof 
for the system behavior theorem of each agent generated by the Planner (equations 
(33) and (34)) and (ii) to function as the central element in the Knowledge De- 
coder. We now describe its function for proving the behavior theorem. Later, we will 
overview its function as part of the Knowledge Decoder. To show how the Inferencer 
is used to prove the Planner theorem, (33), (34), first, we show how this theorem is 



transformed into a pattern of the form of (35). Since (33), (34) formulates a convex 
optimization problem, a necessary and sufficient condition for optimality is provided 
by the following dynamic programming formulation. 

ViOT,r) = info, j Li($i(T, Y), v{\p{Gi{r,p)))da{p,dr) (42) 

dVi      . *,vdVi     . 

where Y(t) = p and r G [t, t + A) 

In (42), the function Vi, called the optimal cost-to-go function, characterizes 
minimality starting from any arbitrary point inside the current interval. The second 
equation is the corresponding Hamilton-Jacobi-Bellman equation for the problem 
stated in (33) and (34) where H is the Hamiltonian of the relaxed problem. This 
formulation provides the formal coupling between deductive theorem proving and 
optimal control theory. The inferencer allows the real-time optimal solution of the 
formal control problem resulting in intelligent distributed real-time control of the 
multiple-agent system. The central idea for inferring a solution to (42) is to expand 
the cost-to-go function V(.,.) in a rational power series V in the algebra 

D(((Y,r))). (43) 

Replacing V for Vj in the second equation in (42) gives two items: a set of polynomic 
equations for the coefficients of V and a partial order expression for representing the 
optimality. Because of convexity and rationality of V, the number of equations to 
characterize the coefficients of V is finite. The resulting string of conjunctions of 
coefficient equations and the optimality partial order expression are in the form of 
(35). A detailed algorithmic approach to solving (42) which we call hybrid dynamic 
programming can be found in [28] 

In summary, for each agent, the inferencer operates according to the following 
procedure. 

Step 1: Load current theorem (33), (34). 
Step 2: Transform theorem to equational form (35) via (42). 
Step 3: Execute proof according to figure 9. 

If the theorem logically follows from the Knowledge Base (i.e., it is true), the 
inferencer procedure will terminate on step 3 with actions. If the theorem does not 
logically follow from the Knowledge Base, the Adapter is activated, and the theorem 
is modified by the Planner according to the strategy outlined above. This mechanism 
is the essence of reactivity in the agent. Because of relaxation and convexity, this 
mechanism ensures that the controllable set of the domain is strictly larger than the 
mechanism without this correction strategy. 

4.1.5 Knowledge Decoder: 
The function of the Knowledge Decoder is to translate knowledge data from the 

network into the agent's Knowledge Base by updating the inter-agent specification 
clauses. These clauses characterize the second constraint in (42). Specifically, they 



express the constraints imposed by the rest of the network on each agent. They also 
characterize the global-to-local transformations (see [23]). Finally, they provide the 
rules for building generalized multipliers for incorporating the inter-agent constraints 
into a complete unconstrained criterion, which is then used to build the cost-to-go 
function in the first expression in (42). A generalized multiplier is an operator that 
transforms a constraint into a potential term. This potential is then incorporated into 
the original Lagrangian of the agent which now accounts explicitly for the constraint. 

The Knowledge Decoder has a built-in inferencer used to infer the structure of the 
multiplier and transformations by a procedure similar to the one described for (14). 
Specifically, the multiplier and transformations are expanded in a rational power 
series in the algebra defined in (43). Then the necessary conditions for duality are 
used to determine the conjunctions of equational forms and a partial order expression 
needed to construct a theorem of the form of (42) whose proof generates a multiplier 
for adjoining the constraint to the Lagrangian of the agent as another potential. 

The conjunction of equational forms for each global-to-local transformation is 
constructed by applying the following invariant imbedding principle: 

For each agent, the actions at given time t in the current interval, as com- 
puted according to (42), are the same actions computed at t when the for- 
mulation is expanded to include the previous, current, and next intervals. 

By transitivity and convexity of the criterion, the principle can be analytically 
extended to the entire horizon. The invariant imbedding equation has the same 
structure as the dynamic programming equation given in (42), but with the global 
criterion and global Hamiltonians instead of the corresponding local ones. 

The local-to-global transformations are obtained by inverting the global-to-local 
transformations which, in turn, are obtained by expressing the invariant embedding 
equation as an equational theorem of the form of (35). These inverses exist because 
of convexity of the relaxed Lagrangian and the rationality of the power series. 

It is important at this point to interpret the functionality of the Knowledge 
Decoder of each agent in terms of what it does. The multiplier described above 
has the effect of aggregating the rest of the system and the other agents into an 
equivalent companion system and companion agent, respectively, as viewed by the 
current agent. This is illustrated in Figure 10. 

The aggregation model (Figure 10) describes how each agent perceives the rest of 
the network. This unique feature allows us to characterize the scalability of the archi- 
tecture in a unique manner. Namely in order to determine computational complexity 
of an application, we have only to consider the agent with the highest complexity 
(i.e., the local agent with the most complex criterion) and its companion. 

4.2    Architectural Elements of a Declarative Control Network 

The inter-agent communication network's main function is to transfer inter-agent 
constraints among agents according to a protocol written in equational Horn clause 
language. These constraints include application dependent data and, most impor- 
tantly, inter-agent synchronization. The inter-agent synchronization strategy is very 
simple. An agent is synchronous with respect to the network if its inter-agent con- 
straint multiplier is continuous with respect to the current instance of its active 
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knowledge. Since the equational Horn clause format allows for the effective test of 
continuity (which is implicitly carried out by the inferencer in the Knowledge De- 
coder), a failure in the Knowledge Decoder theorem results in a corrective action 
toward re-establishing continuity with respect to the topology defined by the current 
instance of the Knowledge Base [20]. 

The specification of the geometry of the network, as a function of time, is dictated 
primarily by global observability. By global observability, we mean the closure of the 
knowledge of the system as whole relative to the scope the systems reactivity. One of 
the central tasks in any application is to provide knowledge in the equational clause 
format to characterize global observability for the hybrid system. 

4.3    Summary the MAHCA Architecture 

Our formulation gives a precise statement of a hybrid control problem in terms of a 
multiple agent hybrid declarative control. Our approach characterizes the problem 
via a knowledge base of equational rules that describes the dynamics, constraints 
and requirements of plant. 

For the traffic control application, the Behavior statement or ATC statement is 
represented as a Lagrangian of the form 

mina 
f r, r   r   «   v dpc dvc dpv  dvv  dpc dvc dp"  dvv ±   . .        .... nnaJnL(p^yy,-^,^,-^,-^,w,ir,^r,-gr,t,x)da      (44) 

where Q = {(x,t) : 0 <*< oo,0 < x < 2.8} 
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The Goal is maximize the average throughput, given as: 

mox(/imT^oo /    /   Q(pc,vc,pv,vv,Vu)dxdt.) (45) 
Jo   Jo 

The sensor data is given by 

pC(T,Xi)       VC(T,Xi) 

pv(r,Xi)     v
v(T,Xi) 

where i = 1,2,..., 9 to represent sensor inputs at one-third mile intervals and r = 
1,2,... seconds. 

Finally, the actions for the traffic control consist solely of the commanded velocity 
vector Vu. 

We have developed a canonical representation of interacting networks of con- 
trollers. Given a connectivity graph with N nodes (controllers) and the correspond- 
ing agent's knowledge bases, a network of 2N agents can be constructed with the 
same input-output characteristics, so that each agent interacts only with another 
(equivalent) companion agent, whose knowledge base is an abstraction of the knowl- 
edge in the network. Thus, in general, the multiple-agent controller for any network 
configuration is reduced to a set of agent pairs. 

One agent of the agent pair maintains coordination with other agent pairs across 
the network. We call that agent of the pair which represents network information 
the Thevenin Agent, after the author of a similar theorem in electrical network 
theory. The proof carried out by the Thevennin Agent generates, as a side effect, 
coordination rules that define what and how often to communicate with other agents. 
These rules also define what the controller needs from the network to maintain 
intelligent control of its physical plant. 

Our approach develops a canonical way to prove the theorem characterizing the 
desired behavior for each agent by constructing and executing on-line a finite state 
machine called the "proof automaton." The inference process is represented as a re- 
cursive variational problem in which the criterion is an integral of a function called 
the Generalized Lagrangian. The Generalized Lagrangian maps the Cartesian prod- 
uct of equational rules and inference principles to the real line, thus effectively pro- 
viding a hill-climbing heuristic for the inference strategy of the theorem prover (see 
section 3). In MAHCA the inference steps play a role analogous to action signals 
in conventional control while the vector fields on the carrier manifold M constitute 
generators of feedback laws (section 2). 

5    Simulation 

5.1    Simulation Parameters and Operation 

The simulation parameters and constants for the demonstration runs were 

T Length of simulation run = 20 minutes, with data snapshots of 20 second intervals 
(fixed). 



Jfc3 Percentage of cars complying with commanded velocity varied from 5% to 9%. 
This rule was not rigid. The simulation runs demonstrated adaption of this rule 
(to a lower value) when the system began drifting to an instable condition. 

S Average response time = 1.5 seconds (variable). 
Cc Car capacity coefficient, determined for a 4 lane freeway. 

Those parameters marked "variable" were subject to adaptation by the architec- 
ture in response to explicit or inferred changes in the environment. 

Accidents were introduced at a random point (after a 100 second "priming" 
period) at a random location between freeway position x = 1.38 and x = 1.43. At 
this point Cc was reduced by one-half. 

The simulation uses a standard 4-th order Runga-Kutta Integration scheme for 
time and 2-nd order Adam-Bashworth integration for space. 

The simulation produces loop sensor values as inputs for the control functions. 
Sensors appear in pairs (120 ft apart) at one-third mile intervals and provide velocity 
and density data for vehicles and voids. The simulation simulates ideal sensors, free 
of bad data and able to detect voids. 

The simulation was implemented in Prolog using the same set of equations as 
those encoded into the Knowledge Base. Although the equations are the same, the 
simulation is completely different operational entity and only interacts with the 
MAHCA control agents by providing them with sensor inputs and accepting their 
control actions. 

Execution of the simulation is performed by a single top-level prolog rule. 

traf ficjdemo{Inputs, Outputs) : — 

simulation JDUJO f f {Stop), 

simulation(Inputs, Sensorjmt, ActionJn, Outputs), 

controller jon JO f f{Bool), (46) 

record{Actions.in, Sensor sjout, Inputs, Outputs), 

repeat. 

In this rule, trafficdemo is the main rule. The Inputs parameter is expected to 
contain the operational parameters (such as maximum running time). The Outputs 
parameter will become instantiated with the status of the simuluation. 

The simulation.on.offrule provides a mechanism for setting Stop to true to shut 
down the simulation. 

In Simulation, the Inputs and ActionJn parameters are used as inputs to compute 
the next set of Sensor.out values and a new set of simulation Outputs (used for 
recording purposes only). 

Like simulation.on.off, contoller.on.off is a mechanism for setting Bool to True 
to invoke the controller or False to turn it off. During the initial 100 second priming 
period, Bool will be False. 

The controller rule invokes the inferencing process to compute a new set of Ac- 
tion.in values for the simulator from the set of Sensor.out values. 

Finally, record will report, to the terminal and/or to the data files, the values 
from the action lists, sensor outputs, and other simulation and controller inputs and 

L 



outputs. The data was recorded every 60 seconds, starting with t = 160, the end of 
the first control period following the initial 100 second priming. 

5.2 Discussion 

The control will compute and broadcast travel speeds for each segment of the freeway. 
When followed by individuals, the throughput of the whole system will increase. 
Compliance on the part of drivers assumes adoption of the philosophy that adherence 
to less than intuitive speeds is in their best interest. 

The control can also be used to determine and transmit navigational instructions 
throughout a network of freeway corridors, accomplished by tracking the wave prop- 
agations over the segments and guiding a percentage of the vehicles to maximize 
throughput of the system as opposed to minimizing travel for individual cars. 

In the abstraction of individual vehicles into a continuous wave model, some 
information is lost. Since the freeway segment is regarded as one unit, with a width 
parameter representing the number of lanes, knowledge of any particular lane is 
not tracked. Incidences, real, such as stalled vehicles, or imaginary, such as "rubber 
necking", are modeled as a reduction in the width of the segment. Individual vehicles 
are simply contributing particles to the wave, so exact speed and location of any one 
vehicle is not known. 

This model can easily be extended to perform other duties for an intelligent high- 
way system. For example, detection of incidents can be accomplished by inspecting 
shock waves which result for such discontinuities. From the characteristic of the 
shock wave, the nature of the incident can be determined, e.g. a slow moving truck 
or speeding emergency vehicle. This capability is theoretically possible and has been 
demonstrated in a simulation, but it is very difficult to validate with empirical data. 
By comparing inconsistencies between the observed and expected density and veloc- 
ity values in the waves as they propagate along the freeway corridor, errant sensor 
data can be eliminated. For traffic signal processing, red lights can be viewed as a 
total restriction of the highway and green lights as an instantaneous removal of the 
restriction which is naturally coordinated with signal changes for yellow lights and 
cross traffic. The modeling of voids becomes especially important in these cases. 

The reactive capability of the execution strategy of the architecture is exploited 
to provide two major functions. Appearance of shock waves in the solution triggers 
reactivity to decompose the wave generator into continuous and shock components 
to reflect changed conditions. Over the longer term, the reactivity can be used to 
fine tune the equations to account for subtle changes in the nature of the vehicles, 
such as average length, and driver policies, such as speeds and following distances. 

5.3 Preliminary Analysis 

This section gives a brief preliminary analysis of the results of simulations that were 
run by Brian Coles of Intermetrics. The referenced charts appear at the end of the 
paper. There are three sets of charts, one with 5 % of controlled cars, one with 8 
% of controlled cars,and one with 9 % of controlled cars. (With this last set, the 9 
% represents the initial percentage of controlled cars. Over time, this was lowered 
by the Inferencer.) In each set there are three graphs showing the densities and 



velocities of cars and voids, taken at t = 160, t = 700, and t = 1300, the end of the 
simulation run. The last two graphs in each set show the differences in velocity and 
density values over intervals equal to about 1/4 of the simulation run. For all of these 
graphs, the horizontal units are miles along the corridor. Velocities are measured in 
miles/hour and densities are measured in cars (or voids) per mile. 

Along the portion of the freeway corridor before the accident, the density wave 
initially has a high amplitude, but as the velocity control of the cars begins to 
take effect, the amplitude of the wave diminishes. Charts 1-3, 6-8, and 11-13 show 
this phenomena for samples of freeway dynamics at different times and for different 
percentages of control. 

After the accident along the freeway, control is not needed because vehicle den- 
sities never approach the saturation limit. Vehicles are free to travel as fast as they 
want,within legal limits, of course. 

For 9% control, versus no control, the throughput increases 28%. Less than 5% 
control yields unstable behavior and is not effective in eliminating grid-lock. As 
the percentage of controlled cars increases between 5% and 9%, the grid-lock is 
monotonically reduced, compare charts 3 and 13. At 9% control, the grid-lock is 
successfully cleared. Between 9% and 14%, the gridlock is successfully cleared, but 
throughput is reduced. In an effort to achieve the goal of maximizing throughput, 
the controller reduces the percentage of control vehicles. Above 14% control, the 
system experiences performance degradation due to overdeterminism. 

The interaction between void and car density dynamics shown in charts 4, 5, 9, 
10, 14, and 15 demonstrates many density distributions that are possible, but can 
not be generated by representing the dynamics as car densities alone. 

The wave segments generated in the controller allow for easy decomposition be- 
tween continuous and shock elements, see for example charts 1 and 6. This capability 
alone allows the control to infer accidents and recompute the control law accordingly. 
We observed a one-to-one correlation (as expected) between theorem failures and 
the appearance of the shock component. 

In the accident region, the four variables show peaks, see charts 2, 7, 12. These 
peaks, however, do not appear at the same freeway locations. There are phase shifts 
which are due to the asymetry between the car and void particles. The void velocities 
has a phase shift over car velocities, see charts 4, 5, 9,10,14 and 15. This phase shift 
is expoited by the controller to schedule the commanded velocity profile to meet the 
goal of maximizing throughput. The effects of the dynamics due to an incident are 
detected earliest in the void density dynamics. 

Void and car densities together appear to satisfy the additive conservation law, as 
to be expected from models for binary population dynamics (void and car particles). 

The flow of velocity and density waves qualitatively agrees with emperical ob- 
servation. 

Our runs show that traffic congestion latency decreases significantly as the per- 
centage of controlled cars increases. After incident removal with no control, the car 
density goes to nominal after 32 minutes. With 9% control the car density goes to 
nominal after only 12 minutes. This difference is directly due to the scheduling of 
velocities before the accident. That is, the command velocity distribution before the 
accident under control is lower than the velocity distribution with no control 
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